The impact of motion dimensionality and bit cardinality on the design of 3D gesture recognizers
نویسنده
چکیده
The interactive demands of the upcoming ubiquitous computing era have set off researchers and practitioners toward prototyping new gesture-sensing devices and gadgets. At the same time, the practical needs of developing for such miniaturized prototypes with sometimes very low processing power and memory resources make practitioners in high demand of fast gesture recognizers employing little memory. However, the available work on motion gesture classifiers has mainly focused on delivering high recognition performance with less discussion on execution speed or required memory. This work investigates the performance of today’s commonly used 3D motion gesture recognizers under the effect of different gesture dimensionality and bit cardinality representations. Specifically, we show that few sampling points and low bit depths are sufficient for most motion gesture metrics to attain their peak recognition performance in the context of the popular Nearest-Neighbor classification approach. As a practical consequence, 16x faster recognizers working with 32x less memory while delivering the same high levels of recognition performance are being reported. We present recognition results for a large gesture corpus consisting in nearly 20,000 gesture samples. In addition, a toolkit is provided to assist practitioners in optimizing their gesture recognizers in order to increase classification speed and reduce memory consumption for their designs. At a deeper level, our findings suggest that the precision of the human motor control system articulating 3D gestures is needlessly surpassed by the precision of today’s motion sensing technology that unfortunately bares a direct connection with the sensors’ cost. We hope this work will encourage practitioners to consider improving the performance of their prototypes by careful analysis of motion gesture representation rather than by throwing more processing power and more memory into the design. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملThe influence of respiratory motion on dose distribution of 3D-CRT and IMRT- A simulation study
Background: 3DCRT (three-dimensional conformal radiotherapy) and IMRT (intensity-modulated radiotherapy) has provided us with tools to delineate the radiation dose distribution of tumor targets. However, the precision of radiation can be compromised by respiratory motion, which usually limits the geometric and dosimetric accuracy of radiotherapy. The purpose of this study is to evaluate the imp...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملGesture and its impact of resolving lexical ambiguity
The study aimed to shed light on the use of gesture in resolving lexical ambiguity employed by TEFL students. To this end, 60 intermediate Iranian learners, studying at Kish Way Language School in Iran were recruited. The participants were randomly put into two experimental groups and one control group. Both of the experimental groups received the same teaching approach, i.e. teaching homonyms ...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Hum.-Comput. Stud.
دوره 71 شماره
صفحات -
تاریخ انتشار 2013